Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742868

RESUMO

Aberrant levels of reactive oxygen species (ROS) are potential mechanisms that contribute to both cancer therapy efficacy and the side effects of cancer treatment. Upregulation of the non-canonical redox-sensitive NF-kB family member, RelB, confers radioresistance in prostate cancer (PCa). We screened FDA-approved compounds and identified betamethasone (BET) as a drug that increases hydrogen peroxide levels in vitro and protects non-PCa tissues/cells while also enhancing radiation killing of PCa tissues/cells, both in vitro and in vivo. Significantly, BET increases ROS levels and exerts different effects on RelB expression in normal cells and PCa cells. BET induces protein expression of RelB and RelB target genes, including the primary antioxidant enzyme, manganese superoxide dismutase (MnSOD), in normal cells, while it suppresses protein expression of RelB and MnSOD in LNCaP cells and PC3 cells. RNA sequencing analysis identifies B-cell linker protein (BLNK) as a novel RelB complementary partner that BET differentially regulates in normal cells and PCa cells. RelB and BLNK are upregulated and correlate with the aggressiveness of PCa in human samples. The RelB-BLNK axis translocates to the nuclear compartment to activate MnSOD protein expression. BET promotes the RelB-BLNK axis in normal cells but suppresses the RelB-BLNK axis in PCa cells. Targeted disruptions of RelB-BLNK expressions mitigate the radioprotective effect of BET on normal cells and the radiosensitizing effect of BET on PCa cells. Our study identified a novel RelB complementary partner and reveals a complex redox-mediated mechanism showing that the RelB-BLNK axis, at least in part, triggers differential responses to the redox-active agent BET by stimulating adaptive responses in normal cells but pushing PCa cells into oxidative stress overload.


Assuntos
Neoplasias da Próstata , Fator de Transcrição RelB , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Betametasona/farmacologia , Betametasona/uso terapêutico , Humanos , Masculino , Oxirredução , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo
2.
Antioxidants (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943029

RESUMO

Prostate cancer occurs frequently in men and can often lead to death. Many cancers, including prostate cancer, can be initiated by oxidative insult caused by free radicals and reactive oxygen species. The superoxide dismutase family removes the oxygen-derived reactive oxygen species, and increased superoxide dismutase activity can often be protective against prostate cancer. Prostate cancer can be treated in a variety of ways, including surgery, androgen deprivation therapy, radiation therapy, and chemotherapy. The clinical trajectory of prostate cancer varies from patient to patient, but more aggressive tumors often tend to be radioresistant. This is often due to the free-radical and reactive-oxygen-species-neutralizing effects of the superoxide dismutase family. Superoxide dismutase 2, which is especially important in this regard, can be induced by the NF-κB pathway, which is an important mechanism in radioresistance. This information has enabled the development of interventions that manipulate the NF-κB mechanism to treat prostate cancer.

3.
J Mol Neurosci ; 29(3): 279-288, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29313210

RESUMO

Expression of manganese superoxide dismutase (MnSOD), a nuclear-encoded mitochondrial primary antioxidant enzyme, is protective against various paradigms of oxidative stress-induced brain injury. We have shown previously that the presence of an intronic nuclear factor site, κB (NF-κB), in the MnSOD gene is essential for the induction of MnSOD by tumor necrosis factor α (TNF-α). However, whether activation of NF-κB is protective against oxidative stress-induced neuronal injury is unclear. In the present study, we demonstrate that TNF-α activates NF-κB activity in neuronal, SH-SY5Y, cells and preferentially enhances the binding of p50 and p65 to the promoter/enhancer regions of the MnSOD gene. Binding of NF-κB members to the MnSOD gene leads to the induction of MnSOD mRNA and protein levels. Consequently, induction of MnSOD by TNF-α primes neuronal cells to develop resistance against subsequent exposure to ß-amyloid and FeSO4. Taken together, these results suggest that NF-κB might exert its protective function by induction of MnSOD leading to subsequent protection against oxidative stress-induced neuronal injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...